Background: The number of radiolabeled monoclonal antibodies (mAbs) used for medical imaging and cancer therapy is increasing. The required chemical modification for attaching a radioactive label and all associated treatment may lead to a damaged mAb subpopulation. This paper describes a novel method, concentration through kinetics (CTK), for rapid assessment of the concentration of immunoreactive mAb and the specific radioactivity, based on monitoring binding kinetics.
Methods: The interaction of radiolabeled mAb with either the antigen or a general mAb binder such as Protein A was monitored in real time using the instrument LigandTracer. As the curvature of the binding trace has a distinct shape based on the interaction kinetics and concentration of the functional mAb, the immunoreactive mAb concentration could be calculated through reverse kinetic fitting of the binding curves, using software developed for this project. The specific activity, describing the degree of radioactive labeling, was determined through the use of calibrated signal intensities.
Results: The performance of the CTK assay was evaluated on the basis of various mAb-based interaction systems and assay formats, and it was shown that the assay can provide accurate and repeatable results for immunoreactive concentration and specific activity, with both accuracy and relative SD values below 15%.
Conclusion: By applying reverse kinetics on real-time binding traces it is possible to estimate the functional concentration and specific activity of radiolabeled mAb. The CTK assay may in the future be included as a complement to current quality assessment methods of radiolabeled mAbs.