α-Synuclein (αSyn) aggregation is involved in the pathogenesis of Parkinson disease (PD). Recently, substitution of histidine 50 in αSyn with a glutamine, H50Q, was identified as a new familial PD mutant. Here, nuclear magnetic resonance (NMR) studies revealed that the H50Q substitution causes an increase of the flexibility of the C-terminal region. This finding provides direct evidence that this PD-causing mutant can mediate long range effects on the sampling of αSyn conformations. In vitro aggregation assays showed that substitution of His-50 with Gln, Asp, or Ala promotes αSyn aggregation, whereas substitution with the positively charged Arg suppresses αSyn aggregation. Histidine carries a partial positive charge at neutral pH, and so our result suggests that positively charged His-50 plays a role in protecting αSyn from aggregation under physiological conditions.
Keywords: Mutant; Nuclear Magnetic Resonance; Parkinson Disease; Protein Aggregation; Synuclein.
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.