A 42-plex clustered regularly interspaced short palindromic repeat (CRISPR)-based typing technique (spoligotyping) was recently developed at the French National Reference Center for Legionella. It allows the subtyping of the Legionella pneumophila sequence type 1/Paris pulsotype. In this report, we present the transfer of the membrane-based spoligotyping technique to a microbead-based multiplexed format. This microbead-based high-throughput assay uses devices such as Luminex 200 or the recently launched Magpix system (Luminex Corp., Austin, TX). We designated this new technique LP-SPOL (for L. pneumophila spoligotyping). We used two sets of samples previously subtyped by the membrane-based spoligotyping method to set up and validate the transfer on the two microbead-based systems. The first set of isolates (n = 56) represented the whole diversity of the CRISPR patterns known to date. These isolates were used for transfer setup (determination of spacer cutoffs for both devices). The second set of isolates (n = 245) was used to validate the transfer to the two microbead-based systems. The results obtained by the Luminex 200 system were 100% concordant with those obtained by the Magpix system for the 2 sets of isolates. In total, 10 discrepant results were observed when comparing the membrane-based method to the microbead-based method. These discrepancies were further resolved by repeating either the membrane-based or the microbead-based assay. This new assay is expected to play an emerging role for surveillance of L. pneumophila, starting with one of the most frequent genotypes, the sequence type 1/Paris pulsotype. However, the generalization of this typing method to all L. pneumophila strains is not feasible, since not all L. pneumophila strains contain CRISPRs.
Copyright © 2014, American Society for Microbiology. All Rights Reserved.