Visible-light organic photocatalysis for latent radical-initiated polymerization via 2e⁻/1H⁺ transfers: initiation with parallels to photosynthesis

J Am Chem Soc. 2014 May 21;136(20):7418-27. doi: 10.1021/ja502441d. Epub 2014 May 8.

Abstract

We report the latent production of free radicals from energy stored in a redox potential through a 2e(-)/1H(+) transfer process, analogous to energy harvesting in photosynthesis, using visible-light organic photoredox catalysis (photocatalysis) of methylene blue chromophore with a sacrificial sterically hindered amine reductant and an onium salt oxidant. This enables light-initiated free-radical polymerization to continue over extended time intervals (hours) in the dark after brief (seconds) low-intensity illumination and beyond the spatial reach of light by diffusion of the metastable leuco-methylene blue photoproduct. The present organic photoredox catalysis system functions via a 2e(-)/1H(+) shuttle mechanism, as opposed to the 1e(-) transfer process typical of organometallic-based and conventional organic multicomponent photoinitiator formulations. This prevents immediate formation of open-shell (radical) intermediates from the amine upon light absorption and enables the "storage" of light-energy without spontaneous initiation of the polymerization. Latent energy release and radical production are then controlled by the subsequent light-independent reaction (analogous to the Calvin cycle) between leuco-methylene blue and the onium salt oxidant that is responsible for regeneration of the organic methylene blue photocatalyst. This robust approach for photocatalysis-based energy harvesting and extended release in the dark enables temporally controlled redox initiation of polymer syntheses under low-intensity short exposure conditions and permits visible-light-mediated synthesis of polymers at least 1 order of magnitude thicker than achievable with conventional photoinitiated formulations and irradiation regimes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Catalysis
  • Electrons
  • Free Radicals / chemistry
  • Hydrogen / chemistry*
  • Light*
  • Methylene Blue / analogs & derivatives
  • Methylene Blue / chemistry*
  • Molecular Structure
  • Onium Compounds / chemistry*
  • Organometallic Compounds / chemistry*
  • Oxidation-Reduction
  • Photochemical Processes
  • Photosensitizing Agents / chemistry*
  • Polymerization

Substances

  • Free Radicals
  • Onium Compounds
  • Organometallic Compounds
  • Photosensitizing Agents
  • Hydrogen
  • Methylene Blue