While a plethoric empirical literature addresses the relationship between socio-economic status and body weight, little is known about the influence of social class on nutritional outcomes, particularly in developing countries. The purpose of this article is to contribute to the analysis of the social determinants of adult body weight in urban China by taking into account the influence of social class. More specifically, we propose to analyse the position of the Chinese urban middle class in terms of being overweight or obese. The empirical investigations conducted as part of this research are based on a sample of 1320 households and 2841 adults from the China Health and Nutrition Survey for 2009. For the first step, we combine an economic approach and a sociological approach to identify social classes at household level. First, households with an annual per capita income between 10,000 Yuan and the 95th income percentile are considered as members of the middle class. Second, we strengthen the characterization of the middle class using information on education and employment. By applying clustering methods, we identify four groups: the elderly and inactive middle class, the old middle class, the lower middle class and the new middle class. For the second step, we implement an econometric analysis to assess the influence of social class on adult body mass index and on the probability of being overweight or obese. We use multinomial treatment regressions to deal with the endogeneity of the social class variable. Our results show that among the four subgroups of the urban middle class, the new middle class is the only one to be relatively well-protected against obesity. We suggest that this group plays a special role in adopting healthier food consumption habits and seems to be at a more advanced stage of the nutrition transition.
Keywords: China; Clustering; Middle class; Multinomial treatment regression; Nutrition transition; Obesity; Overweight; Social stratification.
Copyright © 2014 Elsevier Ltd. All rights reserved.