To gain insight into the mechanisms that govern the first steps of liver-specific enzyme accumulation upon hormone exposure, the initial accumulation of carbamoylphosphate synthetase, phosphoenolpyruvate carboxykinase, and arginase in monolayer cultures of Embryonic Day 14 rat hepatocytes was studied. By using different fluorescent labels the initial accumulation of two enzymes could be studied simultaneously in individual cells. Both microscopic and flow cytometric analyses showed that the initial expression of genes that are under the same hormonal control appears to lack the coordinated regulation of expression that is seen later in development. The coordination is gradually established during exposure to hormones. Once gene expression becomes coordinated, the enzyme content appears to increase continuously with time. Therefore, we postulate that within individual embryonic hepatocytes the initial intercellular heterogeneity in rate of accumulation of a particular protein may be the result of competition of different genes for an initially limiting supply of common regulatory factors, leading to random differences in the rate of accumulation of the respective gene products. This makes the initiation of liver-specific gene expression within the hepatocytes a stochastic event.