The aim if this study was to investigate the hypothesis that K-RAS 4A is upregulated in a mineralocorticoid-dependent manner in renal cell carcinoma and that this supports the proliferation and survival of some renal cancers. Expression of the K-RAS in renal tumour tissues and cell lines was examined by real-time PCR and Western blot and mineralocorticoid receptor, and its gatekeeper enzyme 11β-hydroxysteroid dehydrogenase-2 was examined by immunocytochemistry on a tissue microarray of 27 cases of renal cell carcinoma. Renal cancer cells lines 04A018 (RCC4 plus VHL) and 04A019 (RCC4 plus vector alone) were examined for the expression of K-RAS4A and for the effect on K-RAS expression of spironolactone blockade of the mineralocorticoid receptor. K-RAS4A was suppressed by siRNA, and the effect on cell survival, proliferation and activation of the Akt and Raf signalling pathways was investigated in vitro. K-RAS4A was expressed in RCC tissue and in the renal cancer cell lines but K-RAS was downregulated by spironolactone and upregulated by aldosterone. Spironolactone treatment and K-RAS suppression both led to a reduction in cell number in vitro. Both Akt and Raf pathways showed activation which was dependent on K-RAS expression. K-RAS expression in renal cell carcinoma is at least partially induced by aldosterone. Aldosterone supports the survival and proliferation of RCC cells by upregulation of K-RAS acting through the Akt and Raf pathways.
Keywords: K-RAS; aldosterone; mineralocorticoid receptor; renal cell carcinoma.
© 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.