The synthesis of all the major acute phase plasma proteins is stimulated in rat hepatoma and primary cultures of hepatocytes by three, structurally and functionally distinct groups of hormones: 1) hepatocyte-stimulating factors (HSF) and interleukin-6 (IL-6); 2) interleukin-1 (IL-1) and tumor necrosis factor (TNF); and 3) glucocorticoids. Each plasma protein gene requires a specific combination of these 3 hormone types for maximal expression. One set of acute phase proteins, including alpha 2-macroglobulin, alpha 1-antichymotrypsin ( = contrapsin), cysteine protease inhibitor ( = thiostatin), alpha 1-antitrypsin, ceruloplasmin and fibrinogens are predominantly regulated by the keratinocyte-derived HSF-III/-II or IL-6, while a second set of proteins, including alpha 1-acid glycoprotein (AGP), haptoglobin and complement C3 are predominantly regulated by keratinocyte-derived HSF-I, IL-1 or TNF. In conjunction with the above peptide hormones, glucocorticoids synergistically enhance the stimulated expression of most, but not all, acute phase proteins. An exceptionally strong synergy between HSF (or IL-6), IL-1 and glucocorticoids is noted for the activation of the AGP gene. To elucidate the molecular mechanisms of regulation, we have identified the cis-acting genetic elements through which all these hormones control the transcriptional activity of the AGP gene. It appears that acute phase activates a specific nuclear binding protein in the rat liver that interacts with the peptide hormone responsive element located 5 kb upstream of the transcriptional start site.