Cell surface lactate receptor GPR81 is crucial for cancer cell survival

Cancer Res. 2014 Sep 15;74(18):5301-10. doi: 10.1158/0008-5472.CAN-14-0319. Epub 2014 Jun 13.

Abstract

The mechanisms that allow cancer cells to adapt to the typical tumor microenvironment of low oxygen and glucose and high lactate are not well understood. GPR81 is a lactate receptor recently identified in adipose and muscle cells that has not been investigated in cancer. In the current study, we examined GPR81 expression and function in cancer cells. We found that GPR81 was present in colon, breast, lung, hepatocellular, salivary gland, cervical, and pancreatic carcinoma cell lines. Examination of tumors resected from patients with pancreatic cancer indicated that 94% (148 of 158) expressed high levels of GPR81. Functionally, we observed that the reduction of GPR81 levels using shRNA-mediated silencing had little effect on pancreatic cancer cells cultured in high glucose, but led to the rapid death of cancer cells cultured in conditions of low glucose supplemented with lactate. We also observed that lactate addition to culture media induced the expression of genes involved in lactate metabolism, including monocarboxylase transporters in control, but not in GPR81-silenced cells. In vivo, GPR81 expression levels correlated with the rate of pancreatic cancer tumor growth and metastasis. Cells in which GPR81 was silenced showed a dramatic decrease in growth and metastasis. Implantation of cancer cells in vivo was also observed to lead to greatly elevated levels of GPR81. These data support that GPR81 is important for cancer cell regulation of lactate transport mechanisms. Furthermore, lactate transport is important for the survival of cancer cells in the tumor microenvironment. Cancer Res; 74(18); 5301-10. ©2014 AACR.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Death / physiology
  • Cell Line, Tumor
  • Cell Survival / physiology
  • HCT116 Cells
  • Hep G2 Cells
  • Heterografts
  • Humans
  • Lactic Acid / metabolism*
  • MCF-7 Cells
  • Mice, Nude
  • Neoplasms / metabolism*
  • Neoplasms / pathology*
  • Receptors, G-Protein-Coupled / genetics
  • Receptors, G-Protein-Coupled / metabolism*
  • Transfection
  • Tumor Microenvironment

Substances

  • HCAR1 protein, human
  • Receptors, G-Protein-Coupled
  • Lactic Acid