Proton transfers are key elementary steps in ethylene polymerization on isolated chromium(III) silicates

Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11624-9. doi: 10.1073/pnas.1405314111. Epub 2014 Jul 7.

Abstract

Mononuclear Cr(III) surface sites were synthesized from grafting [Cr(OSi(O(t)Bu)3)3(tetrahydrofurano)2] on silica partially dehydroxylated at 700 °C, followed by a thermal treatment under vacuum, and characterized by infrared, ultraviolet-visible, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS). These sites are highly active in ethylene polymerization to yield polyethylene with a broad molecular weight distribution, similar to that typically obtained from the Phillips catalyst. CO binding, EPR spectroscopy, and poisoning studies indicate that two different types of Cr(III) sites are present on the surface, one of which is active in polymerization. Density functional theory (DFT) calculations using cluster models show that active sites are tricoordinated Cr(III) centers and that the presence of an additional siloxane bridge coordinated to Cr leads to inactive species. From IR spectroscopy and DFT calculations, these tricoordinated Cr(III) sites initiate and regulate the polymer chain length via unique proton transfer steps in polymerization catalysis.

Keywords: C–H activation; heterogeneous catalysis.

Publication types

  • Research Support, Non-U.S. Gov't