On September 9th, 2002, two goods trains collided in Bad Münder, Lower Saxony, causing the release of more than 40 metric tonnes of epichlorohydrin (1-chloro-2,3-epoxypropane) into the environment. A human biomonitoring study was performed to evaluate the accidental exposure to epichlorohydrin and to assess the possible long-term, i.e. carcinogenic health effects. This was done on the basis of a biochemical effect monitoring using the N-(3-chloro-2-hydroxypropyl)valine and the N-(2,3-dihydroxypropyl)valine haemoglobin adducts of epichlorohydrin in blood to respond to missing ambient monitoring immediately after the crash. N-(3-chloro-2-hydroxypropyl)valine adduct levels above the LOQ (25 pmol/g globin) ranged from 32.0 to 116.4 pmol/g globin in 6 out of 628 samples. The N-(2,3-dihydroxypropyl)valine adduct was not detected above the LOD (10 pmol/g globin) in any of the blood samples. Based on the quantified N-(3-chloro-2-hydroxypropyl)valine adduct values, the body doses after two days of exposure were estimated to be in the range of 1.7-6.2 nmol/kg body weight. The reverse estimation of the external exposure leads to cumulative additional lifetime cancer risks ranging from 2.61×10(-8) to 9.48×10(-8). The estimated excess lifetime cancer risks have to be assessed as extremely low. Our biomonitoring study facilitated the dialogue between individuals and groups concerned and authorities, because suspected or occurred exposures and risks to human health could be quantified and interpreted in a sound manner.
Keywords: Accidental exposure; Epichlorohydrine; Human biomonitoring; Risk assessment.
Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.