Optical probing of ultrafast electronic decay in Bi and Sb with slow phonons

Phys Rev Lett. 2013 Jan 25;110(4):047401. doi: 10.1103/PhysRevLett.110.047401. Epub 2013 Jan 24.

Abstract

Illumination with laser sources leads to the creation of excited electronic states of particular symmetries, which can drive isosymmetric vibrations. Here, we use a combination of ultrafast stimulated and cw spontaneous Raman scattering to determine the lifetime of A(1g) and E(g) electronic coherences in Bi and Sb. Our results both shed new light on the mechanisms of coherent phonon generation and represent a novel way to probe extremely fast electron decoherence rates. The E(g) state, resulting from an unequal distribution of carriers in three equivalent band regions, is extremely short lived. Consistent with theory, the lifetime of its associated driving force reaches values as small as 2 (6) fs for Bi (Sb) at 300 K.