The clinical and economic impact of point-of-care CD4 testing in mozambique and other resource-limited settings: a cost-effectiveness analysis

PLoS Med. 2014 Sep 16;11(9):e1001725. doi: 10.1371/journal.pmed.1001725. eCollection 2014 Sep.

Abstract

Background: Point-of-care CD4 tests at HIV diagnosis could improve linkage to care in resource-limited settings. Our objective is to evaluate the clinical and economic impact of point-of-care CD4 tests compared to laboratory-based tests in Mozambique.

Methods and findings: We use a validated model of HIV testing, linkage, and treatment (CEPAC-International) to examine two strategies of immunological staging in Mozambique: (1) laboratory-based CD4 testing (LAB-CD4) and (2) point-of-care CD4 testing (POC-CD4). Model outcomes include 5-y survival, life expectancy, lifetime costs, and incremental cost-effectiveness ratios (ICERs). Input parameters include linkage to care (LAB-CD4, 34%; POC-CD4, 61%), probability of correctly detecting antiretroviral therapy (ART) eligibility (sensitivity: LAB-CD4, 100%; POC-CD4, 90%) or ART ineligibility (specificity: LAB-CD4, 100%; POC-CD4, 85%), and test cost (LAB-CD4, US$10; POC-CD4, US$24). In sensitivity analyses, we vary POC-CD4-specific parameters, as well as cohort and setting parameters to reflect a range of scenarios in sub-Saharan Africa. We consider ICERs less than three times the per capita gross domestic product in Mozambique (US$570) to be cost-effective, and ICERs less than one times the per capita gross domestic product in Mozambique to be very cost-effective. Projected 5-y survival in HIV-infected persons with LAB-CD4 is 60.9% (95% CI, 60.9%-61.0%), increasing to 65.0% (95% CI, 64.9%-65.1%) with POC-CD4. Discounted life expectancy and per person lifetime costs with LAB-CD4 are 9.6 y (95% CI, 9.6-9.6 y) and US$2,440 (95% CI, US$2,440-US$2,450) and increase with POC-CD4 to 10.3 y (95% CI, 10.3-10.3 y) and US$2,800 (95% CI, US$2,790-US$2,800); the ICER of POC-CD4 compared to LAB-CD4 is US$500/year of life saved (YLS) (95% CI, US$480-US$520/YLS). POC-CD4 improves clinical outcomes and remains near the very cost-effective threshold in sensitivity analyses, even if point-of-care CD4 tests have lower sensitivity/specificity and higher cost than published values. In other resource-limited settings with fewer opportunities to access care, POC-CD4 has a greater impact on clinical outcomes and remains cost-effective compared to LAB-CD4. Limitations of the analysis include the uncertainty around input parameters, which is examined in sensitivity analyses. The potential added benefits due to decreased transmission are excluded; their inclusion would likely further increase the value of POC-CD4 compared to LAB-CD4.

Conclusions: POC-CD4 at the time of HIV diagnosis could improve survival and be cost-effective compared to LAB-CD4 in Mozambique, if it improves linkage to care. POC-CD4 could have the greatest impact on mortality in settings where resources for HIV testing and linkage are most limited. Please see later in the article for the Editors' Summary.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • CD4 Lymphocyte Count / economics*
  • CD4 Lymphocyte Count / methods
  • Cost-Benefit Analysis / economics*
  • Cost-Benefit Analysis / methods
  • Female
  • HIV Infections / diagnosis*
  • HIV Infections / economics*
  • HIV Infections / epidemiology
  • Health Care Costs
  • Health Resources / economics*
  • Humans
  • Male
  • Middle Aged
  • Mozambique / epidemiology
  • Point-of-Care Systems / economics*
  • Young Adult