Footwear-generated biomechanical manipulation of lower-limb joints has been shown to influence lower-limb biomechanics. Numerous studies report the influence of such interventions on the knee, however little is known about the influence of these interventions on the hip. The present study analyzed kinetic and kinematic changes about the hip of 12 healthy young males who underwent biomechanical manipulation utilizing the APOS biomechanical device (APOS-Medical and Sports Technologies Ltd., Herzliya, Israel) allowing controlled foot center of pressure manipulation. Subjects underwent gait testing in four para-sagittal device configurations: Medial, lateral, neutral, and regular shoes. In the medial configuration, subjects demonstrated no change in step width (i.e., distance between right and left foot center of pressure), however inter-malleolar distance significantly increased. Likewise with the medial setting, greater hip abduction was recorded, while hip adduction moment and joint reaction force decreased significantly. We speculate that subjects adopt a modified gait pattern aimed to maintain constant base of support. As a result, hip abductor muscle moment arm increases and adduction moment and joint reaction force decreases. To the best of our knowledge this is the first study to show this relationship. These results contribute to the understanding of lower-limb biomechanics and warrant further investigation.
Keywords: center of pressure; footwear-generated biomechanical manipulations; frontal-plane kinetics and kinematics of the hip; gait analysis; hip adduction and abduction.
© 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.