Objectives: Alterations in neuronal and glial integrity are considered to be of pathogenic impact on major depressive disorder (MDD). For MDD, data on cerebrospinal fluid (CSF) levels of neuron-specific enolase (NSE) are lacking and scarce for glial protein S100B.
Methods: We measured CSF levels of NSE and S100B in 31 patients with MDD and 32 mentally healthy controls using electrochemiluminescence immunoassays (ECLIA).
Results: Adjusted means of NSE were significantly elevated in the MDD patients (11.73 ng/ml (9.95-13.52 95% CI) compared to the controls (6.17 ng/ml (4.55-7.78), F = 9.037, P = 0.004. Effect size for adjusted mean group difference of 5.57 ng/ml was found invariably high (Cohen's d = 1.23). Differentiating MDD from controls, a NSE cut-off of 7.94 ng/ml showed sensitivity of 81% (95% CI 63.7-90.8) and specificity of 75% (95% CI 57.9-86.7). Adjusted levels of S100B did not differ significantly between the two groups (1.12 ng/ml (0.77-1.48) in MDD, 0.97 ng/ml (0.64-1.30) in controls).
Conclusions: Our results of elevated CSF-NSE levels support neuronal pathology in MDD and the potential use of CSF-NSE as marker in clinical diagnostics. Missing group differences in S100B do not promote a specific glial pathology in depressive disorders.
Keywords: NSE; S100B; major depressive disorder; neuron specific enolase; neuronal biomarker.