Background: The relationship between Klebsiella pneumoniae and nosocomial and community-acquired infections is well known, and K. pneumoniae resistance to most antibiotics is increasing worldwide. In contrast, tigecycline remains active against many bacterial strains, and serves as a last resort for treating multi-drug resistant bacterial infections. That tigecycline nonsusceptibility among K. pneumoniae isolates has been reported worldwide is worrying. However, the mechanisms of tigecycline resistance in K. pneumoniae are less well known. We report the genome sequence and genomic characterization of tigecycline-resistant K. pneumoniae strain 5422 isolated from the bile samples of a patient with cholangiocarcinoma.
Results: We sequenced the K. pneumoniae strain 5422 genome using next-generation sequencing technologies. Sequence data assembly revealed a 5,432,440-bp draft genome and 57.1% G + C content, which contained 5397 coding sequences. The genome has extensive similarity to other sequenced K. pneumoniae genomes, but also has several resistance-nodulation-cell division (RND) efflux pump genes that may be related to tigecycline resistance.
Conclusions: K. pneumoniae strain 5422 is resistant to multiple antibiotics. The genome sequence of the isolate and comparative analysis with other K. pneumoniae strains presented in this paper are important for better understanding of K. pneumoniae multi-drug resistance. The RND efflux pump genes identified in the genome indicate the presence of an antibiotic resistance mechanism prior to antibiotics overuse. The availability of the genome sequence forms the basis for further comparative analyses and studies addressing the evolution of the K. pneumoniae drug resistance mechanism and the K. pneumoniae transcriptome.
Keywords: Cholangiocarcinoma; Comparative genomics; Klebsiella pneumoniae; Next-generation sequencing; Tigecycline-resistant.