Post mortem DNA degradation of human tissue experimentally mummified in salt

PLoS One. 2014 Oct 22;9(10):e110753. doi: 10.1371/journal.pone.0110753. eCollection 2014.

Abstract

Mummified human tissues are of great interest in forensics and biomolecular archaeology. The aim of this study was to analyse post mortem DNA alterations in soft tissues in order to improve our knowledge of the patterns of DNA degradation that occur during salt mummification. In this study, the lower limb of a female human donor was amputated within 24 h post mortem and mummified using a process designed to simulate the salt dehydration phase of natural or artificial mummification. Skin and skeletal muscle were sampled at multiple time points over a period of 322 days and subjected to genetic analysis. Patterns of genomic fragmentation, miscoding lesions, and overall DNA degradation in both nuclear and mitochondrial DNA was assessed by different methods: gel electrophoresis, multiplex comparative autosomal STR length amplification, cloning and sequence analysis, and PCR amplification of different fragment sizes using a damage sensitive recombinant polymerase. The study outcome reveals a very good level of DNA preservation in salt mummified tissues over the course of the experiment, with an overall slower rate of DNA fragmentation in skin compared to muscle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • DNA Fragmentation*
  • DNA, Mitochondrial / genetics*
  • Female
  • Humans
  • Mummies
  • Muscle, Skeletal
  • Polymerase Chain Reaction
  • Skin
  • Sodium Chloride / chemistry
  • Tissue Preservation

Substances

  • DNA, Mitochondrial
  • Sodium Chloride

Grants and funding

Funding provided by Swiss National Science Foundation (120662) http://www.snf.ch/de/Seiten/default.aspx, Mäxi Stiftung (FR). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.