Protein C is an endogenous anticoagulant protein with anti-inflammatory properties. Single-nucleotide polymorphisms (SNPs) affect the levels of circulating protein C in European Americans. We performed a genome-wide association (GWA) scan of plasma protein C concentration with approximately 2.5 million SNPs in 2,701 African Americans in the Atherosclerosis Risk in Communities Study. Seventy-nine SNPs from the 20q11 and 2q14 regions reached the genome-wide significance threshold of 5 × 10(-8) . A missense variant rs867186 in the PROCR gene at 20q11 is known to affect protein C levels in individuals of European descent and showed the strongest signal (P = 9.84 × 10(-65) ) in African Americans. The minor allele of this SNP was associated with higher protein C levels (β = 0.49 μg/ml; 10% variance explained). In the 2q14 region, the top SNPs were near or within the PROC gene: rs7580658 (β = 0.15 μg/ml; 2% variance explained, P = 1.7 × 10(-12) ) and rs1799808 (β = 0.15 μg/ml; 2% variance explained, P = 2.03 × 10(-12) ). These two SNPs were in strong linkage disequilibrium (LD) with another SNP rs1158867 that resides in a biochemically functional site and in weak to strong LD with the top PROC variants previously reported in individuals of European descent. In addition, two variants outside the PROC region were significantly and independently associated with protein C levels: rs4321325 in CYP27C1 and rs13419716 in MYO7B. In summary, this first GWA study for plasma protein C levels in African Americans confirms the associations of SNPs in the PROC and PROCR regions with circulating levels of protein C across ethnic populations and identifies new candidates for protein C regulation.
Keywords: African American; GWAS; protein C.
© 2014 WILEY PERIODICALS, INC.