GSK-3β dysregulation contributes to parkinson's-like pathophysiology with associated region-specific phosphorylation and accumulation of tau and α-synuclein

Cell Death Differ. 2015 May;22(5):838-51. doi: 10.1038/cdd.2014.179. Epub 2014 Nov 14.

Abstract

Aberrant posttranslational modifications (PTMs) of proteins, namely phosphorylation, induce abnormalities in the biological properties of recipient proteins, underlying neurological diseases including Parkinson's disease (PD). Genome-wide studies link genes encoding α-synuclein (α-Syn) and Tau as two of the most important in the genesis of PD. Although several kinases are known to phosphorylate α-Syn and Tau, we focused our analysis on GSK-3β because of its accepted role in phosphorylating Tau and to increasing evidence supporting a strong biophysical relationship between α-Syn and Tau in PD. Therefore, we investigated transgenic mice, which express a point mutant (S9A) of human GSK-3β. GSK-3β-S9A is capable of activation through endogenous natural signaling events, yet is unable to become inactivated through phosphorylation at serine-9. We used behavioral, biochemical, and in vitro analysis to assess the contributions of GSK-3β to both α-Syn and Tau phosphorylation. Behavioral studies revealed progressive age-dependent impairment of motor function, accompanied by loss of tyrosine hydroxylase-positive (TH+ DA-neurons) neurons and dopamine production in the oldest age group. Magnetic resonance imaging revealed deterioration of the substantia nigra in aged mice, a characteristic feature of PD patients. At the molecular level, kinase-active p-GSK-3β-Y216 was seen at all ages throughout the brain, yet elevated levels of p-α-Syn-S129 and p-Tau (S396/404) were found to increase with age exclusively in TH+ DA-neurons of the midbrain. p-GSK-3β-Y216 colocalized with p-Tau and p-α-Syn-S129. In vitro kinase assays showed that recombinant human GSK-3β directly phosphorylated α-Syn at a single site, Ser129, in addition to its known ability to phosphorylate Tau. Moreover, α-Syn and Tau together cooperated with one another to increase the magnitude or rate of phosphorylation of the other by GSK-3β. Together, these data establish a novel upstream role for GSK-3β as one of several kinases associated with PTMs of key proteins known to be causal in PD.

MeSH terms

  • Animals
  • Glycogen Synthase Kinase 3 / genetics
  • Glycogen Synthase Kinase 3 / metabolism*
  • Glycogen Synthase Kinase 3 beta
  • Humans
  • Mice
  • Mice, Transgenic
  • Parkinsonian Disorders / genetics
  • Parkinsonian Disorders / metabolism*
  • Parkinsonian Disorders / pathology
  • Parkinsonian Disorders / physiopathology*
  • alpha-Synuclein / genetics
  • alpha-Synuclein / metabolism*
  • tau Proteins / genetics
  • tau Proteins / metabolism*

Substances

  • MAPT protein, human
  • Mapt protein, mouse
  • alpha-Synuclein
  • tau Proteins
  • GSK3B protein, human
  • Glycogen Synthase Kinase 3 beta
  • Gsk3b protein, mouse
  • Glycogen Synthase Kinase 3