Metabolic profile of triple-negative breast cancer in African-American women reveals potential biomarkers of aggressive disease

Cancer Genomics Proteomics. 2014 Nov-Dec;11(6):279-94.

Abstract

Expression of estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) can subdivide breast carcinomas into clinically meaningful classes. Cancers lacking expression of all three of these receptors (triple-negative breast cancer; TNBC) is of particular interest for molecular research because these tumors currently have no effective targets for therapy. Furthermore, TNBCs are relatively more prevalent among African-American women and can account for some of the health disparities associated with breast cancer. We approached a molecular understanding of how TNBC differs from ER(+) breast cancer through a comprehensive gas chromatography (GC)-mass spectrometry (MS) and liquid chromatography (LC)/MS/MS-based and unbiased metabolomic analysis of a series of breast carcinomas from African-American patients. Remarkably, global metabolomic profiling of tumor tissues identified a total of 418 distinct metabolites, out of which 133 (31.8%) were shown to differ between the ER(+) and TNBC tumors with statistical probability of p<0.05. Specific biochemical pathways affected included those reflecting general increases in energy metabolism and transmethylation in the TNBC tumors when compared to ER(+) tumors. Additionally, biochemicals associated with increased proliferation, redox balance and the recently proposed oncometabolites, sarcosine and 2-hydroxyglutarate, were also detected at higher levels in the TNBC versus ER(+) tumors. These studies demonstrate that TNBC tumors have metabolic signatures that distinguish them from ER(+) tumors and suggest that distinctive metabolic characteristics of these tumors might offer new targets for treatment.

Keywords: African-American women; Metabolomic; triple-negative breast cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / metabolism
  • Biomarkers, Tumor / metabolism*
  • Black or African American*
  • Dipeptides / metabolism
  • Energy Metabolism
  • Female
  • Glutathione / metabolism
  • Humans
  • Metabolic Networks and Pathways
  • Metabolome
  • Metabolomics / methods*
  • Methylation
  • Middle Aged
  • NAD / metabolism
  • Neoplasm Invasiveness
  • Oxidation-Reduction
  • Triple Negative Breast Neoplasms / metabolism*
  • Triple Negative Breast Neoplasms / pathology*

Substances

  • Amino Acids
  • Biomarkers, Tumor
  • Dipeptides
  • NAD
  • Glutathione