Objective: The aim was to detect the consistency of the BRAF gene mutation in peripheral blood and tumor tissue of patients with nonsmall-cell lung cancer and discuss the clinical application value of BRAF gene mutation in peripheral blood.
Materials and methods: Real-time fluorescent quantitative polymerase chain reaction was used to test the tissues in 257 patients of nonsmall-cell lung cancer (NSCLC) and the peripheral blood samples in 318 patients of NSCLC, of which 185 cases of peripheral blood specimens could match the tissue samples, and detected the BRAF gene mutation in them by comparison of mutations consistency in blood and tissue samples, and analyzed the correlation between BRAF gene mutations and clinical characteristics of patients.
Results: The BRAF gene mutation rate was 7.23% in peripheral blood of 23 patients with nonsmall-cell lung cancer, and was 5.45% in 14 cancer tissues, the mutation consistency was 80.00% in peripheral blood-tumor tissue matched samples. The consistency was statistically significant (k =0.710, P = 0.000).
Conclusion: The consistency of the BRAF gene mutation in peripheral blood and tissue is high. BRAF gene mutations of peripheral blood could be used for clinical diagnosis and treatment in cases when tissue specimen is hard to get.