Introduction: Cholesterol undergoes oxidation via both enzymatic stress- and free radical-mediated mechanisms, generating a wide range of oxysterols. In contrast to oxidative stress-driven metabolites, enzymatic stress-derived oxysterols are scarcely studied in their association with atherosclerotic disease in humans.
Methods: 24S-hydroxycholesterol (24S-HC), 25-hydroxycholesterol (25-HC), and 27-hydroxycholesterol (27-HC) were assessed in plasma and arteries with atherosclerotic plaques from 10 patients (54-84 years) with severe peripheral artery disease (PAD) as well as arteries free of atherosclerotic plaques from 13 individuals (45-78 years, controls).
Results: Plasma 25-HC was higher in PAD individuals than in controls (6.3[2] vs. 3.9[1.9] ng/mgCol; p = 0.004). 24S-HC and 27-HC levels were, respectively, five- and 20-fold higher in the arterial tissue of PAD individuals than in those of the controls (p = 0.016 and p = 0.001). Plasma C-reactive protein correlated with plasma 24-HC (r = 0.51; p = 0.010), 25-HC (r = 0.75; p < 0.001), 27-HC (r = 0.48; p = 0.015), and with tissue 24S-HC (r = 0.4; p = 0.041) and 27-HC (r = 0.46; p = 0.023).
Conclusion: Arterial intima accumulation of 27-HC and 24S-HC is associated with advanced atherosclerotic disease and systemic inflammatory activity in individuals with severe PAD.
Keywords: 24S-hydroxycholesterol; atherosclerosis; oxysterols; peripheral artery disease.