Optimizing the sequence of anti-EGFR-targeted therapy in EGFR-mutant lung cancer

Mol Cancer Ther. 2015 Feb;14(2):542-52. doi: 10.1158/1535-7163.MCT-14-0723. Epub 2014 Dec 4.

Abstract

Metastatic EGFR-mutant lung cancers are sensitive to the first- and second-generation EGFR tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib, and afatinib, but resistance develops. Acquired resistance to gefitinib or erlotinib occurs most commonly (>50%) via the emergence of a second-site EGFR mutation, T790M. Two strategies to overcome T790M-mediated resistance are dual inhibition of EGFR with afatinib plus the anti-EGFR antibody cetuximab (A+C), or mutant-specific EGFR inhibition with AZD9291. A+C and AZD9291 are now also being tested as first-line therapies, but whether these therapies will extend progression-free survival or induce more aggressive forms of resistance in this setting remains unknown. We modeled resistance to multiple generations of anti-EGFR therapies preclinically to understand the effects of sequential treatment with anti-EGFR agents on drug resistance and determine the optimal order of treatment. Using a panel of erlotinib/afatinib-resistant cells, including a novel patient-derived cell line (VP-2), we found that AZD9291 was more potent than A+C at inhibiting cell growth and EGFR signaling in this setting. Four of four xenograft-derived A+C-resistant cell lines displayed in vitro and in vivo sensitivity to AZD9291, but four of four AZD9291-resistant cell lines demonstrated cross-resistance to A+C. Addition of cetuximab to AZD9291 did not confer additive benefit in any preclinical disease setting. This work, emphasizing a mechanistic understanding of the effects of therapies on tumor evolution, provides a framework for future clinical trials testing different treatment sequences. This paradigm is applicable to other tumor types in which multiple generations of inhibitors are now available.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acrylamides / pharmacology
  • Acrylamides / therapeutic use
  • Afatinib
  • Aged
  • Aniline Compounds / pharmacology
  • Aniline Compounds / therapeutic use
  • Animals
  • Antibodies, Monoclonal, Humanized / pharmacology
  • Antibodies, Monoclonal, Humanized / therapeutic use
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cetuximab
  • Drug Resistance, Neoplasm / drug effects
  • ErbB Receptors / genetics*
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / genetics*
  • Male
  • Mice, Nude
  • Molecular Targeted Therapy*
  • Mutation / genetics*
  • Quinazolines / pharmacology
  • Quinazolines / therapeutic use

Substances

  • Acrylamides
  • Aniline Compounds
  • Antibodies, Monoclonal, Humanized
  • Quinazolines
  • osimertinib
  • Afatinib
  • ErbB Receptors
  • Cetuximab