Recent studies have suggested that synphilin-1, a cytoplasmic protein, is involved in energy homeostasis. Overexpression of synphilin-1 in neurons results in hyperphagia and obesity in animal models. However, the mechanism by which synphilin-1 alters energy homeostasis is unknown. Here, we used cell models and biochemical approaches to investigate the cellular functions of synphilin-1 that may affect energy balance. Synphilin-1 was pulled down by ATP-agarose beads, and the addition of ATP and ADP reduced this binding, indicating that synphilin-1 bound ADP and ATP. Synphilin-1 also bound GMP, GDP, and GTP but with a lower affinity than it bound ATP. In contrast, synphilin-1 did not bind with CTP. Overexpression of synphilin-1 in HEK293T cells significantly increased cellular ATP levels. Genetic alteration to abolish predicted ATP binding motifs of synphilin-1 or knockdown of synphilin-1 by siRNA reduced cellular ATP levels. Together, these data demonstrate that synphilin-1 binds and regulates the cellular energy molecule, ATP. These findings provide a molecular basis for understanding the actions of synphilin-1 in energy homeostasis.