Erythropoiesis is strongly influenced by the interactions between stromal cells and erythroid progenitors, as well as by a key regulatory factor, erythropoietin (EPO). We previously generated mice with a knockdown mutation of Hif-2α (referred to as kd/kd) and found that these kd/kd mice exhibited normocytic anemia, even though the EPO expression was not severely affected. However, the VCAM-1 expression in spleen endothelial cells (EC), which is regulated by HIF-2α, was impaired, resulting in defective erythroid maturation. A deficiency of HIF-2α clearly led to pancytopenia. However, the critical level of HIF-2α required for erythropoiesis has not yet been elucidated. In this study, we generated HIF-2α knockdown/knockout heterozygous mice (kd/null). Strikingly, anemia was observed in the kd/null mice, but the red blood cell indices were significantly improved compared to those of kd/kd mice. In the spleens of kd/null mice, higher HIF-1α activity and expansion of the red pulp area were observed compared to those of kd/kd mice. Importantly, EC isolated from kd/null spleens showed high expression of VEGF receptors, FLK-1 and FLT-1, which are regulated by HIF-1α instead of HIF-2α under hypoxic conditions. We also found higher expression of phosphorylated ERK and higher proliferative activity in the EC isolated from kd/null mice compared to those from kd/kd mice. While the HIF-2α expression was diminished, HIF-1α bound to the HRE region in the promoters of genes that are normally regulated by HIF-2α. These results suggest that there is a compensatory pathway involving HIF-1α that regulates the expression of some HIF-2α target genes.
Keywords: HIF; endothelial cell; erythropoiesis; hypoxia.
© 2015 Wiley Periodicals, Inc.