Detection and quantification of chloramphenicol have played essential roles in the effort to minimize food safety risk. Herein, a sophisticated "turn on" aptasensor based on aptamer-CdTe quantum dots (Apt-QDs) and graphene oxide (GO) was developed for chloramphenicol sensing. In this assay, the fluorescence of CdTe QDs-Apt was efficiently quenched through energy transfer from QDs-Apt to GO, and chloramphenicol was detected by recovering the quenched fluorescence due to specific binding between aptamer and chloramphenicol. The results indicated that the addition of a CdTe QDs-labeled aptamer to a GO solution (250μg/mL) led to a high quenching efficiency, yielding over 90% fluorescence quenching. Using a series of chloramphenicol concentrations (0.1 to 10nM) aptasensor provides a limit of detection and limit of quantification at 98pM and 987pM, respectively. Linearity of response over chloramphenicol was demonstrated (r>0.99). Furthermore, the GO-based aptasensor exhibited excellent selectivity toward chloramphenicol compared to other synthetic drugs with similar structures such as thiamphenicol, metronidazole and nitrofurantoin. Good reproducibility and precision (RSD 4.73%, n=10) of the assay indicates the ability of the aptasensor for routine quantitative trace analysis of chloramphenicol. Our results suggested that the prepared aptasensor was also well qualified for the detection of chloramphenicol in milk with a limit of detection of 0.2ppb.
Keywords: Aptasensor; Chloramphenicol; Graphene oxide; Quantum dots.
Copyright © 2014 Elsevier B.V. All rights reserved.