Context: Hamstring injury-risk assessment has primarily been investigated using isokinetic dynamometry. However, practical issues such as cost and availability limit the widespread application of isokinetics for injury-risk assessment; thus, field-based alternatives for assessing eccentric hamstring strength are needed.
Objective: The aim of this study was to investigate the validity of the angle achieved during Nordic hamstring lowers (break-point angle) as a field-based test for eccentric hamstring strength.
Design: Exploratory study.
Setting: Laboratory.
Participants: Sixteen male (n = 7) and female (n = 9) soccer players (mean ± SD age 24 ± 6 y, height 1.77 ± 0.12 m, and body mass 68.5 ± 16.5 kg) acted as subjects for the study.
Main outcome measures: The authors explored relationships between the Nordic break-point angle (the point at which the subject can no longer resist the increasing gravitational moment during a Nordic hamstring lower) measured from video and isokinetic peak torque and angle of peak torque of right- and left-knee flexors.
Results: The results revealed a meaningful relationship between eccentric knee-flexor peak torque (average of right and left limbs) and the Nordic break-point angle (r = -.808, r2 = 65%, P < .00001). However, there was a weak relationship observed (r = .480, r2 = 23%, P = .06) between break-point angle and the angle of peak torque (average of right and left limbs).
Conclusions: The results suggest that the break-point angle achieved during Nordic hamstring lowers could be used as a field-based assessment of eccentric hamstring strength.