Aims: Liver X receptors (LXRs) transcriptionally regulate inflammation, metabolism, and immunity. Synthetic LXR agonists have been evaluated for their efficacy in the cardiovascular system; however, they elicit prolipogenic side effects which substantially limit their therapeutic use. AZ876 is a novel high-affinity LXR agonist. Herein, we aimed to determine the cardioprotective potential of LXR activation with AZ876.
Methods and results: Cardiac hypertrophy was induced in C57Bl6/J mice via transverse aortic constriction (TAC) for 6 weeks. During this period, mice received chow supplemented or not with AZ876 (20 µmol/kg/day). In murine hearts, LXRα protein expression was up-regulated ∼7-fold in response to TAC. LXR activation with AZ876 attenuated this increase, and significantly reduced TAC-induced increases in heart weight, myocardial fibrosis, and cardiac dysfunction without affecting blood pressure. At the molecular level, AZ876 suppressed up-regulation of hypertrophy- and fibrosis-related genes, and further inhibited prohypertrophic and profibrotic transforming growth factor β (TGFβ)-Smad2/3 signalling. In isolated cardiac myocytes and fibroblasts, immunocytochemistry confirmed nuclear expression of LXRα in both these cell types. In cardiomyocytes, phenylephrine-stimulated cellular hypertrophy was significantly decreased in AZ876-treated cells. In cardiac fibroblasts, AZ876 prevented TGFβ- and angiotensin II-induced fibroblast collagen synthesis, and inhibited up-regulation of the myofibroblastic marker, α-smooth muscle actin. Plasma triglycerides and liver weight were unaltered following AZ876 treatment.
Conclusion: AZ876 activation of LXR protects from adverse cardiac remodelling in pathological pressure overload, independently of blood pressure. LXR may thus represent a putative molecular target for antihypertrophic and antifibrotic therapies in heart failure prevention.
Keywords: Cardiac hypertrophy; Fibrosis; Heart failure; Liver X receptor; Nuclear receptor; Remodelling.
© 2015 The Authors. European Journal of Heart Failure © 2015 European Society of Cardiology.