Genetic testing for non-specific intellectual disability (ID) presents challenges in daily clinical practice. Historically, the focus of the genetic elucidation of non-specific ID has been on genes on the X chromosome, and recent research has brought attention to the growing contribution of autosomal genes. In addition, next-generation sequencing (NGS) has greatly improved the ability to simultaneously analyze multiple genetic loci, making large panel testing a practical approach to testing for non-specific ID. We performed NGS analysis of a total of 90 genes implicated in non-specific ID. The 90 genes included 56 X-linked genes and 34 autosomal genes. Pathogenic variants were identified in 11 of 52 (21%) patient samples. Nine of the eleven cases harbored mutations in autosomal genes including AP4B1, STXB1, SYNGAP1, TCF4 and UBE3A. Our mutation-positive cases provide further evidence supporting the prevalence of autosomal mutations in patients referred for non-specific ID testing and the utility of their inclusion in multi-gene panel analysis.
Keywords: X-linked chromosome; autosomal; intellectual disability; next-generation sequencing; non-specific.
© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.