Magnesium (Mg) alloys have revolutionized the application of temporary load-bearing implants as they meet both engineering and medical requirements. However, rapid degradation of Mg alloys under physiological conditions remains the major obstacle hindering the wider use of Mg-based implants. Here we developed a simple method of preparing a nanoscale MgF2 film on Mg-Nd-Zn-Zr (denoted as JDBM) alloy, aiming to reduce the corrosion rate as well as improve the biological response. The corrosion rate of JDBM alloy exposed to artificial plasma is reduced by ∼20% from 0.337 ± 0.021 to 0.269 ± 0.043 mm·y(-1) due to the protective effect of the MgF2 film with a uniform and dense physical structure. The in vitro cytocompatibility test of MgF2-coated JDBM using human umbilical vein endothelial cells indicates enhanced viability, growth, and proliferation as compared to the naked substrate, and the MgF2 film with a nanoscale flakelike feature of ∼200-300 nm presents a much more favorable environment for endothelial cell adhesion, proliferation, and alignment. Furthermore, the animal experiment via implantation of MgF2-coated JDBM stent to rabbit abdominal aorta confirms excellent tissue compatibility of the well re-endothelialized stent with no sign of thrombogenesis and restenosis in the stented vessel.
Keywords: cytocompatibility; endothelialization; in vitro degradation; magnesium alloy; surface modification.