Changes in beta cell function during the proximate post-diagnosis period in persons with type 1 diabetes

Pediatr Diabetes. 2016 Jun;17(4):237-43. doi: 10.1111/pedi.12271. Epub 2015 Feb 27.

Abstract

Objective: Prior studies examining beta-cell preservation in type 1 diabetes have predominantly assessed stimulated C-peptide concentrations approximately 10 wk after diagnosis. We examined whether earlier assessments might aid in prediction of beta cell function over time.

Methods: Using data from a multi-center randomized trial assessing the effect of intensive diabetes management initiated within 1 wk of diagnosis, we assessed which clinical factors predicted 90-min mixed-meal tolerance test (MMTT) stimulated C-peptide values obtained 2 and 6 wk after diagnosis. We also studied associations of these factors with C-peptide values at 1- and 2-year post-diagnosis. Data from intervention and control groups were pooled.

Results: Among 67 study participants (mean age 13.3 ± 5.7 yr, range 7.8-45.7 yr) in multivariable analyses, C-peptide increased from baseline to 2 wks and then 6 wk. C-peptide levels at these times were significantly correlated with 1- and 2-yr C-peptide concentrations (all p < 0.001), with the strongest observed associations between 6-wk C-peptide and the 1- and 2-yr values (r = 0.66 and r = 0.61, respectively). In multivariable analyses, greater baseline and 6-wk C-peptide, and older age independently predicted greater 1- and 2-yr C-peptide concentrations.

Conclusions: C-peptide assessments close to diagnosis were predictive of subsequent C-peptide production. Our data demonstrate a clear increase in C-peptide over the initial 6 wk after diabetes diagnosis followed by a plateau. Our data do not suggest that MMTT assessments performed closer to diagnosis than 6 wk would improve prediction of subsequent residual beta cell function.

Keywords: clinical science; diabetes in childhood; insulin secretions in vivo.

Publication types

  • Randomized Controlled Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • C-Peptide / blood*
  • Child
  • Diabetes Mellitus, Type 1 / blood*
  • Diabetes Mellitus, Type 1 / physiopathology
  • Humans
  • Insulin-Secreting Cells / physiology*
  • Middle Aged
  • Young Adult

Substances

  • C-Peptide