The class II transactivator (CIITA) is essential for the expression of major histocompatibility complex class II (MHC-II) genes; however, the role of CIITA in gene regulation outside of MHC-II biology is not fully understood. To comprehensively map CIITA-bound loci, ChIP-seq was performed in the human B lymphoblastoma cell line Raji. CIITA bound 480 sites, and was significantly enriched at active promoters and enhancers. The complexity of CIITA transcriptional regulation of target genes was analyzed using a combination of CIITA-null cells, including a novel cell line created using CRISPR/Cas9 tools. MHC-II genes and a few novel genes were regulated by CIITA; however, most other genes demonstrated either diminished or no changes in the absence of CIITA. Nearly all CIITA-bound sites were within regions containing accessible chromatin, and CIITA's presence at these sites was associated with increased histone H3K27 acetylation, suggesting that CIITA's role at these non-regulated loci may be to poise the region for subsequent regulation. Computational genome-wide modeling of the CIITA bound XY box motifs provided constraints for sequences associated with CIITA-mediated gene regulation versus binding. These data therefore define the CIITA regulome in B cells and establish sequence specificities that predict activity for an essential regulator of the adaptive immune response.
© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.