Immunotherapy for the treatment of breast cancer can be categorized as either (a) specific stimulation of the immune system by active immunization, with cancer vaccines, or (b) passive immunization, such as tumor-specific antibodies (including immune modulators) or adoptive cell therapy that inhibit the function of, or directly kill, tumor cells. We will present the current information and the future perspectives of immunotherapy in patients with breast cancer, including the prognostic role of tumor infiltrating lymphocytes, immune signatures, targeted therapies modulating the immune system, and tumor antigen cancer vaccines. Active immunotherapy in breast cancer and its implementation into clinical trials have been largely a frustrating experience in the last decades. The concept that the immune system regulates cancer development is experiencing a new era of interest. It is clear that the cancer immunosurveillance process indeed exists and potentially acts as an extrinsic tumor suppressor. Also, the immune system can facilitate tumor progression by sculpting the immunogenic phenotype of tumors as they develop. Cancer immunoediting represents a refinement of the cancer immunosurveillance hypothesis and resumes the complex interaction between tumor and immune system into three phases: elimination, equilibrium, and escape. Major topics in the field of immunology deserve a response: what do we know about tumor immunogenicity, and how might we therapeutically improve tumor immunogenicity? How can we modulate response of the immune system? Is there any gene signature predictive of response to immune modulators? The success of future immunotherapy strategies will depend on the identification of additional immunogenic antigens that can serve as the best tumor-rejection targets. Therapeutic success will depend on developing the best antigen delivery systems and on the elucidation of the entire network of immune signaling pathways that regulate immune responses in the tumor microenvironment.