Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition

J Magn Reson. 2015 Apr:253:91-7. doi: 10.1016/j.jmr.2015.01.014.

Abstract

The genomics and proteomics revolutions have been enormously successful in providing crucial "parts lists" for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The "sum-of-the-parts" bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by Escherichia coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in Vibrio cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture.

Keywords: Bacterial biofilms; CPMAS; E. coli; Extracellular matrix; REDOR; Solid-state NMR; V. cholerae.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Biofilms*
  • Escherichia coli / chemistry*
  • Extracellular Matrix / chemistry*
  • Nuclear Magnetic Resonance, Biomolecular / methods*
  • Vibrio cholerae / chemistry*