Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in vitro and in vivo

ChemMedChem. 2015 May;10(5):815-26. doi: 10.1002/cmdc.201500015. Epub 2015 Apr 15.

Abstract

Selective inhibitors of the protein tyrosine phosphatase SHP2 (src homology region 2 domain phosphatase; PTPN11), an enzyme that is deregulated in numerous human tumors, were generated through a combination of chemical synthesis and structure-based rational design. Seventy pyridazolon-4-ylidenehydrazinyl benzenesulfonates were prepared and evaluated in enzyme assays. The binding modes of active inhibitors were simulated in silico using a newly generated crystal structure of SHP2. The most powerful compound, GS-493 (4-{(2Z)-2-[1,3-bis(4-nitrophenyl)-5-oxo-1,5-dihydro-4H-pyrazol-4-yliden]hydrazino}benzenesulfonic acid; 25) inhibited SHP2 with an IC50 value of 71±15 nM in the enzyme assay and was 29- and 45-fold more active toward SHP2 than against related SHP1 and PTP1B. In cell culture experiments compound 25 was found to block hepatocyte growth factor (HGF)-stimulated epithelial-mesenchymal transition of human pancreatic adenocarcinoma (HPAF) cells, as indicated by a decrease in the minimum neighbor distances of cells. Moreover, 25 inhibited cell colony formation in the non-small-cell lung cancer cell line LXFA 526L in soft agar. Finally, 25 was observed to inhibit tumor growth in a murine xenograft model. Therefore, the novel specific compound 25 strengthens the hypothesis that SHP2 is a relevant protein target for the inhibition of mobility and invasiveness of cancer cells.

Keywords: SHP2 inhibitors; cancer cell mobility; epithelial-mesenchymal transitions; metastasis; protein tyrosine phosphatases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Movement / drug effects*
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology*
  • Humans
  • Mice
  • Mice, Nude
  • Molecular Docking Simulation
  • Molecular Structure
  • Neoplasms / drug therapy
  • Neoplasms / enzymology*
  • Neoplasms / pathology*
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11 / antagonists & inhibitors*
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11 / metabolism
  • Structure-Activity Relationship
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Enzyme Inhibitors
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11