Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams

IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Apr;62(4):647-62. doi: 10.1109/TUFFC.2014.006805.

Abstract

Elasticity imaging is becoming established as a means of assisting in diagnosis of certain diseases. Shear wave-based methods have been developed to perform elasticity measurements in soft tissue. Comb-push ultrasound shear elastography (CUSE) is one of these methods that apply acoustic radiation force to induce the shear wave in soft tissues. CUSE uses multiple ultrasound beams that are transmitted simultaneously to induce multiple shear wave sources into the tissue, with improved shear wave SNR and increased shear wave imaging frame rate. We propose a novel method that uses steered push beams (SPB) that can be applied for beam formation for shear wave generation. In CUSE beamforming, either unfocused or focused beams are used to create the propagating shear waves. In SPB methods we use unfocused beams that are steered at specific angles. The interaction of these steered beams causes shear waves to be generated in more of a random nature than in CUSE. The beams are typically steered over a range of 3 to 7° and can either be steered to the left (-θ) or right (+θ).We performed simulations of 100 configurations using Field II and found the best configurations based on spatial distribution of peaks in the resulting intensity field. The best candidates were ones with a higher number of the intensity peaks distributed over all depths in the simulated beamformed results. Then these optimal configurations were applied on a homogeneous phantom and two different phantoms with inclusions. In one of the inhomogeneous phantoms we studied two spherical inclusions with 10 and 20 mm diameters, and in the other phantom we studied cylindrical inclusions with diameters ranging from 2.53 to 16.67 mm. We compared these results with those obtained using conventional CUSE with unfocused and focused beams. The mean and standard deviation of the resulting shear wave speeds were used to evaluate the accuracy of the reconstructions by examining bias with nominal values for the phantoms as well as the contrast-to-noise ratio in the inclusion phantom results. In general the contrast-to-noise ratio (CNR) was higher and the bias was lower using the SPB method compared with the CUSE realizations except in the largest inclusions. In the cylindrical inclusion with 10.4 mm diameter, the CNR in CUSE methods ranged between 18.52 and 22.02 and the bias ranged between 5.50 and 11.12%, whereas for SPB methods provided CNR values between 23.07 and 48.90 and bias values between 3.78 and 9.22%. In a smaller cylindrical inclusion with diameter of 4.05 mm, CUSE methods gave CNR between 14.69 and 22.28 and bias ranging between 28.95 and 29.28%, whereas the SPB methods provided CNR values between 16.7 and 25.2 and bias values varying from 25.54 to 30.44%. The SPB method provides a flexible framework to produce shear wave sources that are widely distributed within the field-of-view for robust shear wave speed imaging.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Elastic Modulus
  • Elasticity Imaging Techniques / instrumentation
  • Elasticity Imaging Techniques / methods*
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Models, Theoretical*
  • Phantoms, Imaging
  • Reproducibility of Results
  • Scattering, Radiation
  • Sensitivity and Specificity
  • Shear Strength
  • Ultrasonic Waves*