Background: Mantle cell lymphoma (MCL) is a distinct clinical pathologic subtype of B cell non-Hodgkin's lymphoma often associated with poor prognosis. New therapeutic approaches based on boosting anti-tumor immunity are needed. MCL is associated with overexpression of cyclin D1 thus rendering this molecule an interesting target for immunotherapy.
Methods: We show here a novel strategy for the development of recombinant vaccines carrying cyclin D1 cancer antigens that can be targeted to dendritic cells (DCs) via CD40.
Results: Healthy individuals and MCL patients have a broad repertoire of cyclin D1-specific CD4(+) and CD8(+) T cells. Cyclin D1-specific T cells secrete IFN-γ. DCs loaded with whole tumor cells or with selected peptides can elicit cyclin D1-specific CD8(+) T cells that kill MCL tumor cells. We developed a recombinant vaccine based on targeting cyclin D1 antigen to human DCs via an anti-CD40 mAb. Targeting monocyte-derived human DCs in vitro with anti-CD40-cyclin D1 fusion protein expanded a broad repertoire of cyclin D1-specific CD4(+) and CD8(+) T cells.
Conclusions: This study demonstrated that cyclin D1 represents a good target for immunotherapy and targeting cyclin D1 to DCs provides a new strategy for mantle cell lymphoma vaccine.