Magnetic and magneto-optical properties of Pt/Co/Au and Pt/Co/Pt trilayers subjected to 30 keV Ga(+) ion irradiation are compared. In two-dimensional maps of these properties as a function of cobalt thickness and ion fluence, two branches with perpendicular magnetic anisotropy (PMA) for Pt/Co/Pt trilayers are well distinguished. The replacement of the Pt capping layer with Au results in the two branches still being visible but the in-plane anisotropy for the low-fluence branch is suppressed whereas the high-fluence branch displays PMA. The X-ray absorption spectra and X-ray magnetic circular dichroism (XMCD) spectra are discussed and compared with non-irradiated reference samples. The changes of their shapes and peak amplitude, particularly for the high-fluence branch, are related to the modifications of the local environment of Co(Pt) atoms and the etching effects induced by ion irradiation. Additionally, in irradiated trilayers the XMCD measurements at the Pt L2,3-edge reveal an increase of the magnetic moment induced in Pt atoms.
Keywords: X-ray magnetic circular dichroism (XMCD) spectra; magnetic and magneto-optical properties; perpendicular magnetic anisotropy; trilayer.