Lycopene inhibits cyclic strain-induced endothelin-1 expression through the suppression of reactive oxygen species generation and induction of heme oxygenase-1 in human umbilical vein endothelial cells

Clin Exp Pharmacol Physiol. 2015 Jun;42(6):632-9. doi: 10.1111/1440-1681.12412.

Abstract

Lycopene is the most potent active antioxidant among the major carotenoids, and its use has been associated with a reduced risk for cardiovascular disease (CVD). Endothelin-1 (ET-1) is a powerful vasopressor synthesized by endothelial cells and plays a crucial role in the pathophysiology of CVD. However, the direct effects of lycopene on vascular endothelial cells have not been fully described. This study investigated the effects of lycopene on cyclic strain-induced ET-1 gene expression in human umbilical vein endothelial cells (HUVECs) and identified the signal transduction pathways that are involved in this process. Cultured HUVECs were exposed to cyclic strain (20% in length, 1 Hz) in the presence or absence of lycopene. Lycopene inhibited strain-induced ET-1 expression through the suppression of reactive oxygen species (ROS) generation through attenuation of p22(phox) mRNA expression and NAD(P)H oxidase activity. Furthermore, lycopene inhibited strain-induced ET-1 secretion by reducing ROS-mediated extrace-llular signal-regulated kinase (ERK) phosphorylation. Conversely, lycopene treatment enhanced heme oxygenase-1 (HO-1) gene expression through the activation of phosphoinositide 3-kinase (PI3K)/Akt pathway, followed by induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation; in addition, HO-1 silencing partially inhibited the repressive effects of lycopene on strain-induced ET-1 expression. In summary, our study showed, for the first time, that lycopene inhibits cyclic strain-induced ET-1 gene expression through the suppression of ROS generation and induction of HO-1 in HUVECs. Therefore, this study provides new valuable insight into the molecular pathways that may contribute to the proposed beneficial effects of lycopene on the cardiovascular system.

Keywords: endothelial cells; endothelin-1; heme oxygenase-1; lycopene; reactive oxygen species; strain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carotenoids / pharmacology*
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Endothelin-1 / biosynthesis*
  • Enzyme Induction / drug effects
  • Enzyme Induction / physiology
  • Gene Expression Regulation
  • Heme Oxygenase-1 / biosynthesis*
  • Human Umbilical Vein Endothelial Cells / drug effects
  • Human Umbilical Vein Endothelial Cells / metabolism*
  • Humans
  • Lycopene
  • Reactive Oxygen Species / metabolism*
  • Stress, Mechanical*

Substances

  • Endothelin-1
  • Reactive Oxygen Species
  • Carotenoids
  • HMOX1 protein, human
  • Heme Oxygenase-1
  • Lycopene