3D Imaging of Twin Domain Defects in Gold Nanoparticles

Nano Lett. 2015 Jun 10;15(6):4066-70. doi: 10.1021/acs.nanolett.5b01104. Epub 2015 May 15.

Abstract

Topological defects are ubiquitous in physics and include crystallographic imperfections such as defects in condensed matter systems. Defects can determine many of the material's properties, thus providing novel opportunities for defect engineering. However, it is difficult to track buried defects and their interfaces in three dimensions with nanoscale resolution. Here, we report three-dimensional visualization of gold nanocrystal twin domains using Bragg coherent X-ray diffractive imaging in an aqueous environment. We capture the size and location of twin domains, which appear as voids in the Bragg electron density, in addition to a component of the strain field. Twin domains can interrupt the stacking order of the parent crystal, leading to a phase offset between the separated parent crystal pieces. We utilize this phase offset to estimate the roughness of the twin boundary. We measure the diffraction signal from the crystal twin and show its Bragg electron density fits into the parent crystal void. Defect imaging will likely facilitate improvement and rational design of nanostructured materials.

Keywords: X-ray imaging; coherent imaging; defects; gold nanoparticle; twin domain.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Gold / chemistry*
  • Imaging, Three-Dimensional*
  • Metal Nanoparticles / chemistry*
  • Metal Nanoparticles / ultrastructure*
  • Particle Size
  • X-Ray Diffraction

Substances

  • Gold