Targeting glycolysis for cancer treatment has been investigated as a therapeutic method but has not offered a feasible chemotherapeutic strategy. Our aim was to examine whether AMP-activated protein kinase (AMPK), a conditional oncogene, rescues the energetic stress and cytotoxicity induced by 2-deoxyglucose (2-DG), a glycolytic inhibitor, and the related mechanisms. Luciferin/luciferase adenosine triphosphate (ATP) determination, Western analysis, qRT-PCR analyses, MTT growth assay, clonogenic assay, and statistical analysis were performed in this study. 2-DG decreased ATP levels and subsequently activated AMPK, which contribute to intracellular ATP recovery in MCF-7 cells thus exhibiting no apparent cytotoxicity. Compound C, an AMPK inhibitor, further potentiates 2-DG-induced decrease in ATP levels and inhibits their recovery. 2-DG, via AMPK activation, stimulated cAMP response element-binding protein (CREB) phosphorylation and activity and promoted nuclear peroxisome proliferator-activated receptor gamma coactivator-1-beta (PGC-1β) and estrogen-related receptor α (ERRα) protein expression, leading to augmented mitochondrial biogenesis and expression of fatty acid oxidation (FAO) genes including PPARα, MCAD, CPT1C, and ACO. This metabolic adaptation elicited by AMPK counteracts the ATP-depleting and cancer cell-killing effect of 2-DG. However, 2-DG in combination with AMPK antagonists or small interfering RNA caused a dramatic increase in cytotoxicity in MCF-7 but not in MCF-10A cells. Similarly, when combined with inhibition of CREB/PGC-1β/ERRα pathway, 2-DG saliently suppressed mitochondrial biogenesis and the expression of FAO genes, depleted ATP production, and enhanced cytotoxicity in cancer cells. Collectively, the combination of 2-DG and AMPK inhibition synergistically enhanced the cytotoxic potential in breast cancer cells with a relative nontoxicity to normal cells and may offer a promising, safe, and effective breast cancer therapeutic strategy.