Pyruvate kinase isozyme type M2 (PKM2), a key glycolytic enzyme, which is involved in ATP generation and pyruvate production, participates in tumor metabolism, growth, and other multiple cellular processes. However, one attractive biological function of PKM2 is that it translocates to the nucleus and induces cell apoptosis. Recently, increased PKM2 has been found in age-related macular degeneration (AMD), but little is known regarding its function in the AMD pathophysiology. To investigate whether PKM2 participated in retinal degeneration, we performed a light-induced retinal damage model in adult rats. Western blot and immunohistochemistry analysis showed a significant up-regulation of PKM2 in retinal ganglion cells (RGCs) layer (GCL) after light exposure. Immunofluorescent labeling indicated that PKM2 located mainly in RGCs. Co-localization of PKM2 and active caspase-3 as well as TUNEL in RGCs suggested that PKM2 might participate in RGC apoptosis. In addition, the expression patterns of cyclin D1 and phosphorylated extracellular signal-regulated kinase (p-ERK) were parallel with that of PKM2. Furthermore, PKM2, cyclin D1, and active caspase-3 protein expression decreased by intravitreal injection of U0126, a highly selective inhibitor of MAPK/ERK kinase. Collectively, we hypothesized that PKM2 might participate in RGC apoptosis after light-induced retinal damage medicated by p-ERK through cycle re-entry mechanism.
Keywords: Apoptosis; Cyclin D1; ERK; Light-induced retinal damage; PKM2; RGCs; Rat.