Conformational ensembles and sampled energy landscapes: Analysis and comparison

J Comput Chem. 2015 Jun 15;36(16):1213-31. doi: 10.1002/jcc.23913.

Abstract

We present novel algorithms and software addressing four core problems in computational structural biology, namely analyzing a conformational ensemble, comparing two conformational ensembles, analyzing a sampled energy landscape, and comparing two sampled energy landscapes. Using recent developments in computational topology, graph theory, and combinatorial optimization, we make two notable contributions. First, we present a generic algorithm analyzing height fields. We then use this algorithm to perform density-based clustering of conformations, and to analyze a sampled energy landscape in terms of basins and transitions between them. In both cases, topological persistence is used to manage (geometric) frustration. Second, we introduce two algorithms to compare transition graphs. The first is the classical earth mover distance metric which depends only on local minimum energy configurations along with their statistical weights, while the second incorporates topological constraints inherent to conformational transitions. Illustrations are provided on a simplified protein model (BLN69), whose frustrated potential energy landscape has been thoroughly studied. The software implementing our tools is also made available, and should prove valuable wherever conformational ensembles and energy landscapes are used.

Keywords: Morse theory; energy landscapes; molecular conformations; optimal transport; optimization; sampling.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Models, Molecular
  • Molecular Conformation
  • Protein Conformation
  • Proteins / chemistry*
  • Software
  • Thermodynamics*

Substances

  • Proteins