Oligomerization of band 3 protein has been recently indicated as an early event in senescent or damaged red cell membrane followed by specific deposition of anti-band 3 antibodies and binding of complement C3 fragments. The band 3-anti-band 3-C3b complex is recognized by homologous monocytes, and phagocytosis ensues. This study shows that recognition of the anti-band 3-C3b complex by the monocyte C3b receptor type one (CR1) plays a crucial role in the process of removal of damaged red cells. Indeed, blocking of monocyte CR1 with an anti-CR1 monoclonal antibody abrogated phagocytosis of diamide-treated red cells. Platelet-activating factor (PAF) is a phospholipid mediator involved in inflammatory processes. Nanomolar (R)-PAF enhanced the CR1-dependent phagocytosis of diamide-treated human red cell and of sheep red cells coated with C3b, induced the fast translocation of protein kinase C to monocyte membrane compartment, and stimulated the phosphorylation of monocyte CR1. The biologically inert lyso-PAF and the enantiomer (S)-PAF were inactive. PAF receptor antagonists and inhibitors of protein kinase C blocked the enhancement of phagocytosis induced by PAF. Protein kinase C translocation, phosphorylation of CR1, and stimulation of this receptor to an active state capable of mediating phagocytosis represent a novel pathway by which PAF interferes with red cell homeostasis and possibly modulates inflammatory reactions and host mechanisms against infections.