Histone deacetylases (HDACs) are overexpressed in various cancers. In vivo imaging to measure the expression and functions of HDACs in tumor plays an important role for tumor diagnosis and HDAC-targeted therapy evaluation. The development of stable and highly sensitive HDAC targeting probe is highly desirable. Near-infrared (NIR) fluorescence optical imaging is a powerful technology for visualizing disease at the molecular level in vivo with high sensitivity and no ionizing radiation. We report here the design, synthesis, and bioactivity evaluation of LBH589-Cy5.5 for in vivo NIR fluorescence imaging of HDACs. The IC50 value of the resulting NIR probe to HDACs was determined to be 9.6 nM. In vitro fluorescence microscopic studies using a triple-negative breast cancer cell line, MDA-MB-231, established the binding specificity of LBH589-Cy5.5 to HDACs. An in vivo imaging study performed in MDA-MB-231 tumor xenografts demonstrated accumulation of the probe in tumor with good contrast from 2 h to 48 h postinjection. Furthermore, the fluorescent signal of LBH589-Cy5.5 in tumor was successfully blocked by coinjection of nonfluorescent LBH589 with the probe. In a following therapy evaluation study, the administration of SAHA, a clinically used HDAC inhibitor, decreased LBH589-Cy5.5 accumulation in tumor, demonstrating the potential application of LBH589-Cy5.5 for evaluating therapeutic response of HDAC inhibitors in cancer treatment.
Keywords: LBH589; NIR fluorescent imaging; histone deacetylases; therapy evaluation; triple-negative breast cancer.