Schizophrenia patients have shown altered resting-state functional connectivity (rsFC) of the cingulate cortex; however, it is unknown whether rsFCs of the cingulate subregions are differentially affected in this disorder. We aimed to clarify the issue by comparing rsFCs of each cingulate subregion between healthy controls and schizophrenia patients. A total of 102 healthy controls and 94 schizophrenia patients underwent resting-state functional magnetic resonance imaging with a sensitivity-encoded spiral-in imaging sequence to reduce susceptibility-induced signal loss and distortion. The cingulate cortex was divided into nine subregions, including the subgenual anterior cingulate cortex (ACC), areas 24 and 32 of the pregenual ACC, areas 24 and 32 of the anterior mid-cingulate cortex (aMCC), posterior MCC (pMCC), dorsal (dPCC) and ventral (vPCC) posterior cingulate cortex (PCC) and retrosplenial cortex (RSC). The rsFCs of each cingulate subregion were compared between the two groups and the atrophy effect was considered. Results with and without global signal regression were reported. Most cingulate subregions exhibited decreased rsFCs in schizophrenia after global signal regression (GSR). Without GSR, only increased rsFC was found in schizophrenia, which primarily restricted to the aMCC, PCC and RSC. Some of these increased rsFCs were also significant after GSR. These findings suggest that GSR can greatly affect between-group differences in rsFCs and the consistently increased rsFCs may challenge the functional disconnection hypothesis of schizophrenia.