The hypothesis to use microRNAs (miRNAs) circulating in the blood as cancer biomarkers was formulated some years ago based on promising initial results. After some exciting discoveries, however, it became evident that the accurate quantification of cell-free miRNAs was more challenging than expected. Difficulties were linked to the strong impact that many, if not all, pre- and post- analytical variables have on the final results. In this study, we used currently available high-throughput technologies to identify miRNAs present in plasma and serum of patients with breast, colorectal, lung, thyroid and melanoma tumors, and healthy controls. Then, we assessed the absolute level of nine different miRNAs (miR-320a, miR-21-5p, miR-378a-3p, miR-181a-5p, miR-3156-5p, miR-2110, miR-125a-5p, miR-425-5p, miR-766-3p) in 207 samples from healthy controls and cancer patients using droplet digital PCR (ddPCR) technology. We identified miRNAs specifically modulated in one or more cancer types, according to tissue source. The significant reduction of miR-181a-5p levels in breast cancer patients serum was further validated using two independent cohorts, one from Italy (n = 70) and one from US (n = 90), with AUC 0.66 and 0.73 respectively. This study finally powers the use of cell-free miRNAs as cancer biomarkers and propose miR-181a-5p as a diagnostic breast cancer biomarker.
Keywords: breast cancer; cancer biomarkers; cell-free microRNA; droplet digital PCR.