Medicago, Inc. has developed an efficient virus-like particle (VLP) vaccine production platform using the Nicotiana benthamiana expression system, and currently has influenza-based products targeting seasonal/pandemic hemagglutinin (HA) proteins in advanced clinical trials. We wished to generate a trackable HA-based VLP that would allow us to study both particle assembly in plants and VLP interactions within the mammalian immune system. To this end, a fusion protein was designed, composed of H5 (from influenza A/Indonesia/05/2005 [H5N1]) with enhanced green fluorescent protein (eGFP). Expression of H5-eGFP in N. benthamiana produced brightly fluorescent ∼160 nm particles resembling H5-VLPs. H5-eGFP-VLPs elicited anti-H5 serologic responses in mice comparable to those elicited by H5-VLPs in almost all assays tested (hemagglutination inhibition/IgG(total)/IgG1/IgG2b/IgG2a:IgG1 ratio), as well as a superior anti-GFP IgG response (mean optical density = 2.52 ± 0.16 sem) to that elicited by soluble GFP (mean optical density = 0.12 ± 0.06 sem). Confocal imaging of N. benthamiana cells expressing H5-eGFP displayed large fluorescent accumulations at the cell periphery, and draining lymph nodes from mice given H5-eGFP-VLPs via footpad injection demonstrated bright fluorescence shortly after administration (10 min), providing proof of concept that the H5-eGFP-protein/VLPs could be used to monitor both VLP assembly and immune trafficking. Given these findings, this novel fluorescent reagent will be a powerful tool to gain further fundamental insight into the biology of influenza VLP vaccines.
Keywords: H5 hemagglutinin; fluorescent particle; immune response; particle assembly.
© FASEB.