Atrophy of the cortical thickness and gray matter volume are regarded as sensitive markers for the early clinical diagnosis of Alzheimer's disease (AD). This study aimed to investigate differences in atrophy patterns in the frontal-subcortical circuits between MCI and AD, assess whether these differences were essential for the pathologic basis of cognitive impairment. A total of 131 individuals were recruited, including 45 with cognitively normal controls (CN), 46 with MCI, and 40 with AD. FreeSurfer software was used to perform volumetric measurements of the frontal-subcortical circuits from 3.0 T magnetic resonance (MR) scans. Data revealed that both MCI and AD subjects had a thinner cortex in the left caudal middle frontal gyrus and the left lateral orbitofrontal gyrus compared with CN individuals. The left lateral orbitofrontal gyrus was also thinner in AD compared with MCI patients. There were no statistically significant differences in the cortical mean curvature among the three groups. Both MCI and AD subjects exhibited smaller bilateral hippocampus volumes compared with CN individuals. The volumes of the bilateral hippocampus and the right putamen were also smaller in AD compared with MCI patients. Logistic regression analyses revealed that the left lateral orbitofrontal gyrus and bilateral hippocampus were risk factors for cognitive impairment. These current results suggest that atrophy was heterogeneous in subregions of the frontal-subcortical circuits in MCI and AD patients. Among these subregions, the reduced thickness of the left lateral orbitofrontal and the smaller volume of the bilateral hippocampus seemed to be markers for predicting cognitive impairment.