African buffaloes (Syncerus caffer) are maintenance hosts of Mycobacterium bovis, the causative agent of bovine tuberculosis. They act as reservoirs of this infection for a wide range of wildlife and domestic species, and the detection of infected animals is important to control the geographic spread and transmission of the disease. Interferon gamma (IFN-γ) release assays (IGRAs) utilizing pathogen-derived peptide antigens are highly specific tests of M. bovis infection; however, the diagnostic sensitivities of these assays are suboptimal. We evaluated the diagnostic utility of measuring antigen-dependent interferon gamma-induced protein 10 (IP-10) release as an alternative to measuring IFN-γ levels. M. bovis-exposed buffaloes were tested using the Bovigam PC-EC and Bovigam PC-HP assays and a modified QuantiFERON TB-Gold (mQFT) assay. IP-10 was measured in the harvested plasma and was produced in significantly greater abundance in response to M. bovis antigens in Bovigam-positive than in Bovigam-negative animals. For each assay, using the Bovigam results as a reference, receiver operating characteristic curve analysis was done to determine diagnostically relevant cutoff values for IP-10. Thereafter, mQFT test results derived from measurement of IP-10 and IFN-γ were compared and a larger number of Bovigam-positive animals were detected using IP-10 as a diagnostic marker. Moreover, using IP-10, agreement between the mQFT assay and the Bovigam assays was increased, while the excellent agreement between the Bovigam assays was retained. We conclude that IP-10 is a sensitive marker of antigen recognition and that measurement of this cytokine in antigen-stimulated whole blood might increase the sensitivity of conventional IGRAs in African buffaloes.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.